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I.  INTRODUCTION 

The stability of a projectile can be markedly reduced by the presence of 
a liquid payload. This problem has been addressed analytically and experi- 
mentally1. It can be shown that, if certain natural frequencies of the fluid 
correspond to the fast precessional frequency of the projectile, a periodic 
liquid moment is applied to the projectile. This moment can be sufficiently 
large and produce dramatic flight instabilities. Experimental data are nor- 
mally gathered by tracking the angular motion of a projectile during flight 
with yawsondes2 or by measuring the yaw history of a freely gimballed gyro- 
scope in the laboratory3. In this study, pressures were measured for a liquid 
which was spinning as a quasi-rigid body when the container was impulsively 
subjected to small amplitude circular coning motion. This type of motion will 
be termed as cone-up. 

Pressure measurements for rotating liquids have been made by Aldridge1*"6 

and by Whiting7. These investigations have considered axisymmetric and non- 
axisymmetric disturbances when the liquid is in rigid body rotation or under- 
goes spin-up. A schematic of the device used by Whiting is shown in Figure 
1. A rotor is held within a cage support. Below the cage, a small DC motor 
drives the liquid-filled rotor at constant spin rates (normally 83Hz). The 
spin drive motor is surrounded by a smaller cage which is connected to a 
bushing that is held in a cam. The position of the bushing in the cam can be 
set and fixed by a pair of adjustable screws, thus producing an inclination of 
the spin axis of the rotor/cage support assembly to the vertical. The cam is 
driven from beneath the support stand by a second DC motor via a belt drive 

1. K. Stewartson, "The Stability of a Spinning Top Containing Liquid t Jour- 
nal  of Fluid Meahanias,   Vol.   5,   1959,   pp.  557-592. 

2. Andrew Mark and William H. Mermagen,   "Measurement qf Spin Decay and Insta- 
bility of Liquid-Filled Projeatiles Via Telemetry i BRL Memorandum Report 
2333,   October 1973.    AD No.   771919. 

3. B.G.  Karpov,   J.T.  Frasier.   and W.P.  D'Amioo,   "Experimental Studies with a 
Liquid-Filled Gyroscope,    Journal  of Spacecraft and. Rockets,   Vol.   9,   No. 
3,   March 1972,   pp.   220-222. 

4. K.D.  Aldridge,   "Experimental  Verification of the Inertia!  Oscillations of 
a Fluid in a Cylinder During Spin-Up,    BRL  Contract Report 273,   November 
1975.     AD No.  A018797. 

5. K.D. Aldridge, "Axisymmetric Inertial Oscillations of a Fluid in a Cylin- 
drical Cavity During Spin-Up from Rest>" Geoyhys. Astrophys. Fluid Dynam- 
ics.   Vol.   8,   1977,   pp.   279-301. 

6. K.D.  Aldridge and S.  Stergiopoulos,   "Ringdown of Coupled Inertial  Waves in 
a Rotating Fluid . presented at the Canadian Geophysical  Union Meeting, 
Calgary,   Alberta,  May 1981. 

7. Richard D. Whiting, "An Experimental Study of Forced Asymmetric Oscilla- 
tions in a Rotating Liquid-Filled Cylinder , BRL Technical Report ARBRL- 
TR-02376,   October 1981.    AD No.  Al07948. 



and a pulley. A typical steady coning frequency for this system is 4Hz. A 
pair of miniature pressure transducers are mounted on the flat surface of an 
insert which forms the end wall of the liquid-filled cylinder, as shown in 
Figure 2. The output from the pressure transducers is amplified, conditioned, 
and transmitted to the laboratory frame via a telemetry system located below 
the cylinder and within the rotor. The present electronics system permits 
only the measurement of pressure fluctuations and not steady pressure respon- 
ses. Further details of the pressure measurement system can be found within 
Ref. 7. 

A short review of some of the basic phenomena common to rotating liquid 
systems is necessary so that the experimentally determined pressure data can 
be properly processed and understood. Assuming that the liquid is in a state 
of rigid body rotation, any disturbance in the motion of the container will 
generate a system of inertial waves8. Once the flow has adjusted to the new 
motion of the container, the waves will be dissipated by viscosity. If a 
forced motion of the container is induced and sustained, then the initial 
circulation of the flow will be modified and the wave motion will persist. If 
the frequency of the forcing motion is programmable, then the response of the 
liquid can be measured as a function of the forcing frequency. In the experi- 
ments of Whiting, the spin rate, coning rate, and coning angle of the rotor 
were all constant within a particular experimental trial. Ordinarily, steady 
state pressure was determined as a function of coning frequency. Subsequent- 
ly, the coning angle or the kinematic viscosity of the test liquid were 
changed. Since the pressure of the liquid will depend upon many variables, a 
pressure coefficient was formulated, Cp = P/ep$2a2. If a linear formulation 

of the pressure is assumed, then a Fourier decomposition should adequately 
describe the steady state response of the pressure. The magnitude of the 
Fourier component whose frequency corresponds to the coning frequency of the 
rotor is defined as P. The density of the liquid is p, the spin rate of the 
rotor is $, the radius of the cylinder is a, and the coning angle is e. The 
Reynolds number. Re, is defined as a2$/v, where v is the kinematic viscosity. 

In the experiments conducted by Whiting, P was measured after the rotor 
had been spinning and coning for extremely long times. A range of coning 
angles were tested to determine the linear regime for Cp. A most startling 

result was established as a consequence of these experiments: linear behavior 
for Cp was limited to coning angles no larger than 0.027deg for Re=5xl05. 

This boundary for linear behavior is dependent upon Re, with larger permis- 
sible amplitudes for smaller values of Re. Previous experiments by Scott and 
D'Amico had shown that linear models for the yaw growth rate of a liquid- 
filled gyroscope were limited to approximately one degree for a similar Re9. 
These boundaries for linear behavior are quite disturbing since projectiles 
typically have Reynolds numbers well in excess of one million and execute 
angular motions during free flight of several degrees. The additional impact 
of spin-up from rest or cone-up on these boundaries for linear behavior are 

8. H.P.   Greenspan,   The  Theory of Rotating  Huidsf   Cambridge Press,   1969. 

9. W.E.  Soott and  V.^5,. D'Amiao,   "Amplitude-Dependent Behavior of a Liquid- 
Filled Gyroscope,    Journal  of Fluid Meahanics.   Vol.   Z,   1966,   pp.  17-26. 
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unknown. There have been many investigations and experiments that have deter- 
mined the time to liquid spin-up within projectiles10"11, but cone-up has not 
been addressed. The purpose of the present set of experiments is to determine 
the behavior of the unsteady pressure during cone-up, to determine the time 
for the liquid to achieve a steady state response, and to determine if the 
boundary between linear and nonlinear behavior is substantially modified by 
cone-up. 

II. DESCRIPTION OF EXPERIMENTS 

The coning device that was used by Whiting was modified to produce impul- 
sive coning motion. A detailed description of the pressure measurement system 
and the telemetry link is found in Ref. 7. Modifications to the experimental 
device and supporting equipment were not required except to produce impulsive 
coning motion. This was done by locating a magnetic clutch on the shaft 
between the pulley and the cam, which was used to impulsively start or brake 
the cam. The cam rotation period is monitored by a magnetic sensor. The time 
between successive pulses from the sensor is processed by a time interval 
measurement system with a resolution of 0.01ms. These times are inverted to 
obtain the coning frequency. The generation of impulsive coning motion will 
present operational difficulties. If rapid rise times are desired, overshoots 
from tie planned steady state coning frequency may occur. A pair of typical 
coning frequency histories are shown in Figure 3. (All coning histories are 
provided within Appendix A for reference.) The dashed line represents the 
desired steady state coning frequency. Operationally, the cam was initially 
oriented such that the first timing pulse occurred only after 90deg of rota- 
tion. This pulse was then used as a starting pulse for the processing of all 
timing pulses. The coning frequency during the first period of rotation for 
the cam exceeded the desired steady state frequency of 3.5Hz. The rise time 
is quite impulsive, but an overshoot in the coning frequency, u, occurs. 
Also, a decay to the steady state coning frequency required several seconds. 
The impact of this overshoot on the measured pressures must be clearly under- 
stood. Figure 4 is an idealized response curve for the steady state pressure 
as a function of coning frequency, u. The response of the liquid to a coning 
frequency history of the type shown in Figure 3 could be unusual. The coning 
frequency which produces the maximum pressure is identified as omax. Two 
cases must be examined: (1) u < omax and (2) to > (jnax. For (1), the liquid 
is momentarily forced at a frequency that is slightly faster than w, but still 
slower than amax. Under these circumstances, the pressure will overshoot the 
anticipated steady state value. For (2), the liquid is momentarily forced at 
a frequency that will produce a lower pressure than the pressure associated 
with the steady state coning frequency. An overshoot in pressure will not 
occur, but the time to reach the steady state pressure may be modified. For 
the data in Figure 3 where u < amax, a small overshoot in a) can yield a large. 

10. Andrew Mark,   ''Measurements of Angular Momentum Transfer in Liquid-Filled 
Frojeatiles?" BRL Teahniaal Report ARBRL-TR-02029,   November 1977.    AD No. 
A051056. 

11. Clarenoe W. Kitchens,   Jr.,   and Nathan Gerher,   "Prediction of Spin-Deaay 
of Liquid-Filled Projectiles ," BRL Report 1996,   July 1977.    AD No. 
A043275. 



momentary over-pressure due to the steepness of the response curve. The 
effect of these undesirable overshoots in to are not understood at this time, 
and further experiments must be conducted where the rise time, overshoot, and 
decay time are varied. The sensitivity of the liquid response to these 
effects can thereby be identified. 

Pressures were measured during cone-up for two cone angles: 0.02 and 
0.05deg. A single cylinder geometry (height=19.99cm, diameter^.35cm, aspect 
ratio(c/a)=3.15) were tested at a Re=5.23xl05 (spin=83.3Hz, v=0.01cm2/s). The 
amplitude of the pressure signal was determined by a spectrum analyzer (Hew- 
lett-Packard 3582A). A data window of 2.5s with a flat top passband shape was 
utilized and resulted in a frequency resolution of 1.45Hz and an amplitude 
error of less than 1%.    Unsteady data were processed using sliding time sam- 
ples with overlaps of 0.5s. Such a technique implicity assumes that the data 
are quasi-steady during the time interval which is processed, and such an 
assumption cannot be justified. However, the time to the steady state pres- 
sure response can be determined by such a procedure. The pressure data were 
recovered from the telemetry link and stored on an analog recorder. The data 
were then processed through the spectrum analyzer with the aid of a computer 
and a time delay generator. Raw voltage amplitudes were converted into pres- 
sures using system transfer functions with the aid of the computer. 

The sequence of events during a data trial were as follows. First, the 
rotor would be inclined to the vertical at the proper coning angle. Second, 
the rotor would be allowed to spin at a steady rate for a sufficiently long 
period of time such that the pressures measured by the spectrum analyzer were 
steady. Third, with the magnetic clutch disengaged, the processional drive 
was set to the proper speed. Fourth, the clutch was engaged producing impul- 
sive coning motion. It was necessary to modify this procedure slightly since 
the clutch had a tendency to drift and produce a very slow rotation of the 
cam. A solenoid was used to hold the cam in position. The clutch would then 
be simultaneously engaged when the solenoid was retracted. The clutch was 
also used to brake the precessional drive. Data were recorded during cone- 
down, but have not been processed. Ordinarily, two runs would be made on both 
sides of ainax, starting from u < amax. After a survey in u had been accom- 
plished, a few values of to were duplicated. Duplicate runs at amax were 
always made. 

III.  EXPERIMENTAL RESULTS 

The pressure histories for the transducer located at a radius of 21.2mm 
will be reported as P/Pss, where P is the instantaneous amplitude determined 
by the spectrum analyzer and Pss is the steady state pressure. The first 
plotted value of the pressure ratio is at 1.25s, which corresponds to the 
middle of the 2.5s data window. Successive determinations of amplitude are at 
0.5s intervals as previously discussed. 

A. Coning Angle of 0.02deq. 

Figures 5a-e provide pressure ratio histories for five different coning 
frequencies. When to < amax = 3.918Hz, overshoots in P/Pss did occur, as 
expected. For to > amax, overshoots did not occur.  In general the time to 
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achieve a steady response is several   seconds, and oscillations about P/Pss=l 
persist even for long times.    The data in Figure 5a indicate an overshoot to 
1.8, then a relaxation below P/Pss=l, and then a continuing oscillatory behav- 
ior.    The data in Figure 5b exhibit an overshoot to only 1.2 at 3-4s, and then 
a relaxation to P/Pss=l.    Data in Figure 5c did not exhibit an overshoot.    Two 
runs were made since upamax.    The runs were not made in immediate succession, 
but displayed consistent trends.    Data within Figure 5d did not exhibit an 
overshoot.    Data within  Figure  5e also did  not  exhibit an  overshoot,  but  an 
unusual  excursion in P/Pss occurred between 1.25 and 3.25s. 

B.    Coning Angle of Q.05deg 

Data for this case are presented within Figures 6a-e.    As before,  over- 
shoots  in P/Pss occur for ui < uinax.    Figure 6a shows an overshoot of 1.8, and 
a relaxation below P/Pss=l.    The two runs show consistent trends.    Data within 
Figure 6b show an overshoot to 1.2 and a decay to P/Pss=l.    Small   differences 
exist between the two runs.     If the coning frequency histories for these runs 
are carefully examined  (refer to Appendix A),  it is  seen that the frequency 
overshoot for Run 7 exceeded oinax,  and this condition will yield a lower 
pressure.    The data in Figure 6c does not have an overshoot, but a sizeable 
amplitude difference exists during the 6-17s timeframe.    Again,  a careful 
examination of the coning frequency history for these runs shows that Run 6 
was slightly slower in frequency than Run 3 during this time period.    A 
slightly faster coning frequency for aFamax will   produce a reduction in pres- 
sure.    The data in Figures 6d and 6e do not exhibit overshoots  in P/Pss or 
other anomalous behavior. 

IV.     DETERMINATION OF THE CONE-UP  TIME 

The pressure histories provide a direct measurement of the time required 
by the liquid to adjust to the motion of the cylinder.    Since P/Pss adjusts to 
the final   steady state  response in an asymptotic form, the time at which 
P/Pss=0.95 was arbitrarily selected as the cone-up time.     In practice,  each 
pressure history was examined for the time at which   |l-P/Pss|>0.05.    The 
presence of overshoots and oscillatory behavior in the pressure histories will 
affect the determination of cone-up times, but the simple criterion of   |1- 
P/Pss|>Q.05 was applied.    The cone-up times were correlated with the steady 
state value of Cp (Figures 7 and 8).    The correlations  have a linear trend. 

Some of the times do not correlate well,  for example Run 2 for the 0.02deg 
case and Runs 1, 2, 7,  and 9 for the 0.05deg case.    All   of these runs were 
pressure histories with overshoots,  and a better correlation would be produced 
if slightly shorter cone-up times could be justified for these cases.    An 
overshoot  in w would produce higher pressures and slightly longer cone-up 
times, as determined by the selected criterion for cone-up time.    Since the 
overshoot effects are not understood at this time,  however,  it seems to be 
unreasonable to modify the cone-up criterion in an attempt to simply produce 
better correlations of the data.    The results indicate that longer cone-up 
times are required for larger Cp values.     If Cp is  reduced by modification of 

operational parameters such as Re, coning amplitude, or aspect ratio, then the 
cone-up times will also be reduced. Conversely, if Cp is increased, the cone- 
up times will   also increase. 

11 



Since the experiments of Whiting have shown nonlinear effects for CD, the 

selected coning angles for these initial cone-up experiments were quite small, 
especially by projectile standards. Figure 9 shows a comparison between data 
by Whiting and "steady state" responses from the cone-up experiments. Since 
Cp is scaled by the coning angle, data from experiments at different coning 

angles should fall within a narrow band if linear behavior exists. Departures 
from this band should be considered as nonlinear. The data by Whiting exhibit 
nonlinear trends only for the larger values of Cp. Data from the cone-up 

experiments are consistent within themselves, but are outside the band estab- 
lished by the Whiting data. All of the data indicate a maximum Cp for to/jj 

approximately equal to 0.046. This indicates that parameters which may tend 
to shift the location of the omax, principally Reynolds number and aspect 
ratio, are consistent between the various experiments. It simply appears that 
the Cp amplitudes for the cone-up data are lower. Transfer functions for the 

pressure transducer/telemetry systems were independently determined, but were 
essentially identical to those used by Whiting.  It is possible that nonlinear 
effects have been introduced by the impulsive disturbance during cone-up. 
These effects once introduced may not dissipate. Due to the nature of the 
experiments and the limited operating time of the battery operated telemetry 
system, very long time records were not taken during the cone-up experiments. 

A crude estimate of the cone-up time for linear pressure responses can be 
made. Assume 

Ptotal = Pss + Ptransient , (1) 

where Ptransient is the unsteady pressure response during cone-up. Now Pss 
can be represented as a superposition using the natural modes of oscillation 
(eigenfrequencies) and a proper set of eigenfunctions. Ptransient could be 
expressed in the same fashion. For oFomax (the case of exact resonance), 
Ptransient will be dominated by the eigenfrequency equal to onax/^. 

i l^-nt 
Ptransient = z/^e  m  , (2) 

This eigenfrequency is complex and the imaginary part (tj) will control the 

response or decay time for Ptransient. The viscous corrected eigenfrequency 
can be computed by methods established by Wedemeyer12, where an order of 

magnitude approximation will yield TI=0(Re *). The cone-up time, Tc, for 

coning angles of linear pressure response is, 

Tc = ReV$ (3) 

22.     E.H.   Wedemeyer,   "Viscous Covveations to Stewavtson's Stability Cvite- 
Hon t" BEL Report 1325,   June 1966.    AD No.  489687. 
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For Rur 3 or Run 6 of the 0.02deg case, the viscous eigenfrequency  is  Tm=0.467 

+ i   1.35xl0"3 and Tc=1.42 s.    These estimates of cone-up time should 
correspond to the e-folding time or the time for P/Pss to reach 0.623.    From 
Figure 5c, P/Pss=0.623 occurs at approximately one second, which roughly 
corresponds to the estimated values for Tc.    Further experiments to determine 
the dependence of Tc on the coning angle should be made. 

If the cone-up time of a liquid is several   seconds, then the simulation 
of a liquid payload on-board a projectile must account for spin-up from rest 
and cone-up.    Kitchens and Gerber have shown that a substantial   exchange of 
angular momentum can occur in-bore for a liquid-filled projectile11.    Kitchens 
and Gerber defined  L/Lo as the ratio of the instantaneous angular momentum of 
the liquid to the angular momentum that the liquid would have as a solid body 
rotating at the launch spin rate.    Within Ref.   11 for Re=3.32xl03 and 
1.70xl06, computed values for L/Lo at muzzle exit were 0.20 and 0.03,  respec- 
tively.    Yawing motion for the projectile is initiated in an impulsive fashion 
upon lajnch, but spin-up is in progress during travel  down the bore.    There is 
also a ^ery small   amplitude yawing motion during travel  down the bore  (ballot- 
ing).    The amplitude of this  in-bore motion is probably similar to the present 
set of experiments.    This  in-bore motion may produce an unusual   set of initial 
conditions for the free-flight motion.    There is,  however, an overlap of the 
spin-up and cone-up regimes.    An estimate for the spin-up time can be found in 

Ref.  8:    Ts=(c/a)Re2/$.    Since spin-up is an exponential   process, Ts  repre- 
sents the characteristic or e-folding time for a cylinder when Re>>l.    Since 

both Ts and Tc are 0(Re 2), the unsteady processes for cone-up and spin-up 
must be considered simultaneously for a liquid-filled projectile. For the 
present experiments, Ts=4.3s  (as  labeled on Figures 7 and 8). 

V.  CONCLUSIONS 

A series of experiments were performed to determine the response time of 
a spinning liquid to impulsive coning motion. For the aspect ratio and Rey- 
nolds ntmber tested, the cone-up times were several seconds in duration. 
Linear correlations were developed for the cone-up times and steady state 
pressure coefficients. 

Coning angles were restricted to very small angles (0.02 and 0.05deg) so 
that the pressure data could be easily interpreted without the presence of 
gross nonlinear effects.  It is probable that yaw levels typical of real 
projectiles will modify the conclusions that have been reached by this initial 

investigation, but an engineering estimate for the cone-up time is Rev$. 
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